بانک مقالات کشاورزی و باغبانی و گیاه پزشکی
بانک مقالات کشاورزی و باغبانی و گیاه پزشکی فارسی انگلیسی ترجمه
موضوعات مطالب
آمار و امكانات
:
:

دانلود ديكشنري كشاورزي مخصوص بابيلون

پشتیبانی سایت

 

لینک عضویت در کانال تلگرامی ما ضمنا برخی مقالات فقط در کانال ما موجود هستند حتما بازدید کنید.


بهار  96  برشما عزیزان  تبریک و تهنیت باد



202_ DNA و ژنوم
ارسال شده توسط سیدمهدی شمس در ساعت ۸:٤٤ ‎ب.ظ

DNA and Genome

Abstract

The size of a genome may change very rapidly if it fuses with another genome, or accumulates some DNA via a virus, or some other mechanism of horizontal transfer. Acquiring new DNA means acquiring new genes, but genomes do have size limits. Why? Every round of replication extracts a cost for the larger genome, and therefore genomes must balance the expense of replicating redundant DNA with the benefit of having genes that provide a selective advantage only under rare circumstances. Conversely, losing DNA and genes could be advantageous if the cell evolves to fill a new niche, such as inside another species. If genes are no longer advantageous, the DNA can be lost and the more efficient genome provides a selective advantage. From what we can tell so far, genome sizes tend to stay within a fairly narrow size range for a given group of species. For example, K- and O-islands are newly acquired DNA, but all gut bacteria tend to have genomes in the 4 to 5 Mb range. As they acquire new DNA, cells tend to return to a genome home-ostasis with an optimal size and gene count. You might think that 200 sequenced genomes is enough and that we don't need to sequence more, but there is power in numbers for comparative genomics. Consider the analogy of living in a cave all your life and coming out one day and seeing a bluebird and a blue jay. Based on this sampling, you might conclude that all birds are blue. Later in the day, you see a red cardinal and a yellow canary, which leads you to conclude diat all birds must be primary colors. Using a small sample size leads to inaccurate conclusions. Imagine your surprise when you see a hummingbird, an ostrich, and a penguin. Just as we learn more about birds by studying their diversity, we learn more about genomes when we have a larger sample size. However, resources are limited so we must choose wisely which genomes we sequence to maximize our ability to learn from them (see Section 2.1). DNA and Genome

 

چکیده ترجمه:

اندازه ژنوم ها، در صورتی که با ژنوم های دیگر ترکیب گردد، یا DNA هایی را از طریق یک ویروس یا مکانیسم های دیگر انتقال افقی گرداوری کند، ممکن است به سرعت تغییر کند. دسترسی به DNA جدید به معنی دسترسی به ژن جدید می باشد اما ژنوم ها دارای محدودیت اندازه می باشند. چرا؟ هر چرخه رونوشت، برای ژنوم های بزرگتر هزینه ای را در بر دارد و بنابراین ژنوم ها می بایست تعادلی را برای مقدار رونوشت DNA با داشتن ژن هایی که دارای مزایای گزینشی تحت شرایط خاص می باشند، ایجاد کنند. برعکس از دست دادن DNA و ژن ها می تواند مفید باشد اگر سلول های مربوطه شکاف های جدید ( همانند گونه های دگیر) را پر کنند. اگر ژن ها، دیگر مفید نباشند، DNA ها ار بین رفته و ژنوم های کارآمدتر مزایای گزینشی را خواهند داشت. از آنچه که تا به حال بیان کرده ایم  اندازه ژنوم ها برای گروهی از گونه ها در یک اندازه نسبتا محدودی قرار می گیرند. برای نمونه بخش های K وo بدن فرد، DNA جدیدی را کسب می کنند اما باکتری های مربوط به روده دارای ژنوم هایی در محدوده 4 و 5 MB می باشند. زمانی که آن ها DNA جدیدی را کسب می کنند، سلول ها به تعادل حیاتی ژتوم ، با اندازه بهینه شده و ژن ها شمارش شده بر می گردند.
شما ممکن است این موضوع را در ذهن داشته باشید که 200 توالی ژنوم کافی بوده و نیاز به توالی بیشتر نمی باشد اما در تعداد ژنوم های نسبی، قدرتی وجود دارد. تصور کنید که تمام عمر خود را در یک غار زندگی کرده اید و روزی که بیرون آمدید یک پرنده امربکای شمالی آبی رنگ و یک زاغ آبی رنگ را دیده اید، بر این اساس شما ممکن است تصور کنید که تمام پرندگان آبی رنگ هستند. در روزهای بعد شما یک سهره قرمز رنگ و یک قناری زردرنگی را می بینید و شما ممکن است به این نتیجه گیری برسید که تمام پرندگان از همان ابتدای وجودشان دارای رنگ های خاصی می باشند. استفاده از نمونه های کمتر ممکن است شما را منتهی به نتیجه گیری اشتباهی بکند. زمانی که شما مرغ مگس خوار، شترمرغ و پنگوئن را مشاهده می کنید این موارد باعث تعجب شما می شود. زمانی که ما در ارتباط با تنوع پرندگان مطالعات بیشتری را انجام می دهیم، چیزهای بیشتری نیز در ارتباط با آن ها یاد می گیریم. و زمانی که ما نمونه های بیشتری در دست داریم، چیزهای بیشتری نیز در ارتباط با ژنوم ها یاد می گیریم. به هر حال منابع محدود بوده و بنابراین می بایست به طور آگاهانه ای انتخاب کنیم که چه ژنومی را می خواهیم انتخاب کنیم تا بتوانیم توانایی های خود را در ارتباط با فرا گرفن آن ها افزایش دهیم.

 

نوع مقاله :فارسی با ترجمه

 مرتبط با : پروژه - بیوتکنولوژی - بیوشیمی گیاهی - ژنتیک

 عنوان مقاله  :  DNA و ژنوم

 مرجع مقاله :----

 سال انتشار: 2011

 تعداد صفحات :9 صفحه 

 

دانلود لاتین مقاله شماره 202

دانلود ترجمه مقاله  (4.500 تومان) به بخش راهنمای پرداخت برید

Technical aspects of functional proteomics in plants

 Since the completion of genome sequences of several organisms, attention has been focused to determine the function and functional network of proteins by proteome analysis. This analysis is achieved by separation and identification of proteins, determination of their function and functional network, and construction of an appropriate database. Many improvements in separation and identification of proteins, such as two-dimensional electrophoresis, nano-liquid chromatography and mass spectrometry, have rapidly been achieved. Some new techniques which include top-down mass spectrometry and tandem affinity purification have emerged. These techniques have provided the possibility of high-throughput analysis of function and functional network of proteins in plants. However, to cope with the huge information emerging from proteome analyses, more sophisticated techniques and software are essential. The development and adaptation of such techniques will ease analyses of protein profiling, identification of post-translational modifications and protein–protein interaction, which are vital for elucidation of the protein functions.  2004 Elsevier Ltd. All rights reserved. Keywords: Proteome; Porteomics; Mass spectrometry; Protein profiling; Post-translational modification; Protein–protein interaction; Plant

 

چکیده ترجمه:

از زمان تکمیل توالی های ژنومی ارگانیسم های متعدد ، تجزیه و تحلیل پروتئوم توجهات را به تعیین کارکرد و شبکۀ کارکردی پروتئین ها معطوف کرده است.این تجزیه و تحلیل با جدا سازی و شناسایی پروتئین ها، تعیین کارکرد و نقش آنها و شبکۀ کارکردی و ساخت یک پایگاه داده ای مناسب حاصل می شود. پیشرفت های بسیاری در زمینۀ جداسازی و شناسایی پروتئین ها مانند الکتروفروز دو بعدی ،کروماتوگرافی نانو مایع و طیف سنجی جرمی به سرعت حاصل شده اند. برخی تکنولوژی های جدید مانند طیف سنجی جرمی بالا- پایین  و خاص سازی میل ترکیبی پشت سر هم  بوجود آمده است. این روش ها امکان تجزیه و تحلیل توان عملیاتی زیاد کارکرد و شبکۀ کارکردی پروتئین ها در گیاهان را فراهم می کند. اما برای رسیدگی به اطلاعات زیاد حاصل از این تجزیه و تحلیل های پروتئوم ، روش ها و نرم افزارهای پیچیده تری لازم است. پیشرفت و انطباق این تکنیک ها ، تجزیه و تحلیل برش عمودی پروتئین ، شناسایی تغییرات بعد از ترجمه و فعل و انفعال پروتئین پروتئین را آسان می کند که برای روشن سازی وظایف پروتئین حیاتی است.
کلیدواژه: پروتئوم،طیف سنجی جرمی، برش عمودی پروتئین ، تغییرات بعد از ترجمه، و فعل و انفعال پروتئین- پروتئین، گیاه

 

 نوع مقاله :فارسی با ترجمه

 مرتبط با : پروژه - بیوتکنولوژی - بیوشیمی گیاهای - بیتکنولوژی

 عنوان مقاله  :   جنبه های تکنیکی پروتئومیکس کارکردی در گیاهان

 مرجع مقاله :----

 سال انتشار: 2004

 تعداد صفحات :12 صفحه 

 

دانلود لاتین مقاله شماره 201

دانلود ترجمه مقاله  (5.500 تومان) به بخش راهنمای پرداخت برید


گیاه بن سای ( همه چیز درباره بنسای )
ارسال شده توسط سیدمهدی شمس در ساعت ۳:٢۳ ‎ق.ظ

بن سایمجموعه ای از باغبانی و هنر است که به واسطه آن گیاه با یک تغییر شکل تحمیل شده به یک مجسمه زنده تبدیل می شود. هنرمند با استفاده از مفاد زیبایی، وهمی از طبیعت را در غالب شکل مینیاتوری پدید میآورد. بنسای یک آرایش غیرطبیعی نیست بلکه در قالب یک تغییر شکل ساده، طبیعت اصلی را ذهن آدمی تداعی میکند.
بن سای در اصل واژهای ژاپنی و به معنی کاشت گیاهان در گلدانهای کم عمق است . به این ترتیب که گیاه در گلدانهایی کم عمق با خاک کم و در شرایط محدود کننده از نظر رشد قرار میگیرد و با آرایش زیبا وتربیت صحیح به درختی مسن ولی کوچک تبدیل می شود. برای تحقق این هدف تمام قسمتهای گیاه اعم از ریشه ها، تنه، شاخه ها، میوه ها و گلها حایز اهمیت هستند.

ریشه ها:

ریشه های گیاه بنسای شده، در عین استحکام، سلامت و گستردگی، باید ظاهری کهن به درخت ببخشند. درروشهای متقارن، نامتقارن و اریب، ریشه ها در تمام جهات گسترده شده اند. اما در روشهای بادزده، صخره،رویشی و .... ریشه ها غالباً در جهت خلاف انحنای تنه گسترده شده اند. تا بدین ترتیب به گیاه ظاهری متقارن ببخشند. تعدادی ازریشه ها روی خاک قرار داده میشوند تا قدمت درخت را از نظر ظاهری افزایش دهند و تصور فرسایش خاک را در سالهای گذشته در ذهن القا کنند. برای تحقق این مهم، در زمان انتقال گیاه به گلدان بزرگتر، تعدادی از ریشه ها را روی خاک قرار می دهند و روی آنها را با خزه اسفاگنوم و مقدار کمی خاک می پوشانند. در طی آبیاری های مکرر، این پوشش نازک، از بین میرود و پوست ریشه در معرض نور خورشید، سخت میشود و بدین ترتیب هدف ما در القای تصور کهن بودن گیاه تحقق می آید.
برای تشکیل ریشه های جدید در جهت مناسب، می توان ریشه را تا لایه کامبیوم خراش داد و روی آن را با خاک و خزه پوشاند. بعد از چند هفته، در محل زخم ریشه های جدیدی ایجاد میشود.

تنه:

گرچه همه قسمت های گیاه بن سای شده مهم است ، اما تنه گیاه اولین قسمتی است که توجه ناظر را به خود جلب میکند .تنه بن سای باید پوستی ضخیم ، یک پارچه و تودرتو داشته باشد . تنه باید به گونه ای باشد که هرچه به راس نزدیک میشود ضخامت آن کمتر شود . روی یک تنه خوب نباید آثار زخم ناشی از سیم پیچی دیده شود .

شاخه ها:

گیاهان در طبیعت ممکن است شاخه های در هم پیچیده داشته باشند . ولی در بن سای با سیم پیچی ، شاخه ها را به گونه ای تربیت می کنند ، که گیاه زیبا جلوه کند . معمولاً شاخه ها از نظر قطر و طول تفاوت دارند . شاخه های پایین تر ضخیم تر و بلندتر هستند و بخوبی در همه جهات گسترده می شوند . شکل هر شاخه به تنهایی نیز مد نظر است . در هنر بن سای بسیاری از شاخه های گیاه مطلوب به نظر نمی رسد . از این رو این شاخه ها را قطع می کنند .

برگها:

در یک بن سای خوب برگ ها سبز ، متراکم و کوچک است . گیاهانی که برگهای بزرگ دارند یا تعداد برگ آنها کم است ،برای بن سای مناسب نیستند . گیاهانی که برگ های کمی دارند ،درختی خزان کرده را تداعی می کنند . برگ های بزرگ نیز نسبت به اندازه کلی درخت بن سای شده، نامتناسب به نظر می رسند، برای آن که اندازه برگها کوچک شود ، از روش بیبرگی یا هرس برگ استفاده می کنند. این روش در کاهش اندازه برگ موثر است ولی در تغییر اندازه گلها و میوه ها زیاد مورد توجه نیست.

راس ساقه:

تنه به تدریج باریک می شود ، تا در انتها به راس منتهی شود. هرگاه به ارتفا‎ع کمتری نیاز باشد، می توان راس آن را قطع کرد و شاخه پایینتر از راس را که در راستای تنه است یا زاویه کمی با راستای تنه دارد ،به عنوان راس انتخاب و باپیچیدن سیم آن را تربیت کرد. در هر حال درخت بنسای شده باید دارای راس باشد.

پشت و روی یک بنسای

بنسای را نباید به صورت یک گیاه طبیعی در گلدان رها کرد. بلکه باید آن را طبق طرح مورد نظر کاشت و تربیت کرد. بنسای باید در نظر یک ناظر به خوبی جلوه گری کرده و قسمت جلو و پشت آن با هم فرق کند. کاملترین قسمت، قسمت جلو است . برآمدگی تنه نباید در جلو قرار گیرد.انتهای تنه باید قابل رویت بوده و تنه در یک طرف انحنا داشته باشد. نوک ساقه یا راس در قسمت جلو باید به طرف ناظر باشد.در قسمت جلو نباید شاخهها درهم پیچیده باشند. همچنین نباید به طرف جلو رشد کنند و باید تمام شاخه ها به وضوح قابل دید باشند. قسمت پشت ، عمق مشخص و دیدگاه سه بعدی به گیاه می دهد، لذا یک یا دو شاخه در این قسمت تعبیه می گردد.

طرق مختلف پرورش بنسای

پرورش نهالی
1- مابوری یا پرورش نهالی که از طبیعت گرفته می شود.
2-پرورش نهالی که از طریق خوابانیدن به وجود می آید.
3-پرورشنهالی که از طریق جدا کردن به وجود می آید.
4-پرورش نهالی که از قلمه زدن به وجود می آید.
5-پرورش نهالی که از طریق پیوند زدن به وجود می آید.
6-پرورش نهالی که از طریق کاشت بذر به وجود میآید.
7-پرورش نشا که از یک خزانه فراهم شده است .

مشهورترین بنساهای ژاپنی به همین طریق پرورش یافته اند. نهالی که در طبیعت به دلیل شرایط نامناسب رشد، خود به خود کوتاه و کوچک مانده است ، برای مبدل شدن به یک بنسای زیبا تنها احتیاج به یک تربیت صحیح دارد.گیاهانی نظیر کاج سیاه ژاپنی ، کاج قرمز ژاپنی ، کاج سوزنی ، عرعر و ... را میتوان از این طریق بنسای نمود.
مزیت این روش ، صرفه جویی در وقت است . زیرا برای تهیه بنسای از طریق کشت بذر، حداقل به 5 الی 10 سال زمان نیاز داریم. در ژاپن گیاهانی را که با توجه به خصوصیات بنسای از طبیعت جمع آوری میکنند، «آراکی» می نامند. بسیاری از گیاهانی که در صخره ها و کوهستانهای مناطق گرمسیری و معتدل در شکاف صخره ها رشد کرده اند ، به علت شرایط خاص موجود در منطقه و محیط کشت، خود به خود بنسای و تبدیل به درختانی مسن، با ارتفاع کم شده اند.

خصوصیاتآراکی:

  

  بقیه در ادامه مطلب

 

نوع مقاله : انگلیسی - کامل

مرتبط با : مرتعداری  - کشاورزی پایدار - اکولوژی - حاصلخیزی - دامپروری

عنوان مقاله  :  Economic and environmental impacts of pasture nutrient management.

مرجع مقاله : jurnal range managment

سال انتشار: ٢٠٠٣

تعداد صفحات : ٧ صفحه

دانلود مقاله شماره ۴٣

میتوکندری Mitochondrion
ارسال شده توسط سیدمهدی شمس در ساعت ٧:٠٦ ‎ب.ظ

 

 میتوکندری      Mitochondrion

 

In cell biology, a mitochondrion (plural mitochondria) is a membrane-enclosed organelle found in most eukaryotic cells.[1] These organelles range from 1–10 micrometers (μm) in size. Mitochondria are sometimes described as "cellular power plants" because they generate most of the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy. In addition to supplying cellular energy, mitochondria are involved in a range of other processes, such as signaling, cellular differentiation, cell death, as well as the control of the cell cycle and cell growth.[2] Mitochondria have been implicated in several human diseases, including mental disorders[3] and cardiac dysfunction,[4] and may play a role in the aging process. The word mitochondrion comes from the Greek μίτος or mitos, thread + χονδρίον or khondrion, granule. Their ancestry is not fully understood, but, according to the endosymbiotic theory, mitochondria are descended from ancient bacteria, which were engulfed by the ancestors of eukaryotic cells more than a billion years ago.

Several characteristics make mitochondria unique. The number of mitochondria in a cell varies widely by organism and tissue type. Many cells have only a single mitochondrion, whereas others can contain several thousand mitochondria.[5][6] The organelle is composed of compartments that carry out specialized functions. These compartments or regions include the outer membrane, the intermembrane space, the inner membrane, and the cristae and matrix. Mitochondrial proteins vary depending on the tissues and species. In human, 615 distinct types of proteins were identified from cardiac mitochondria;[7] whereas in murinae (rats), 940 proteins encoded by distinct genes were reported.[8] The mitochondrial proteome is thought to be dynamically regulated.[9] Although most of a cell's DNA is contained in the cell nucleus, the mitochondrion has its own independent genome. Further, its DNA shows substantial similarity to bacterial genomes.[10]

     

ساختار      Structure

A mitochondrion contains outer and inner membranes composed of phospholipid bilayers and proteins.[5] The two membranes, however, have different properties. Because of this double-membraned organization, there are five distinct compartments within the mitochondrion. There is the outer mitochondrial membrane, the intermembrane space (the space between the outer and inner membranes), the inner mitochondrial membrane, the cristae space (formed by infoldings of the inner membrane), and the matrix

  

 غشا خارجی       Outer membrane

The outer mitochondrial membrane, which encloses the entire organelle, has a protein-to-phospholipid ratio similar to that of the eukaryotic plasma membrane (about 1:1 by weight). It contains large numbers of integral proteins called porins. These porins form channels that allow molecules 5000 Daltons or less in molecular weight to freely diffuse from one side of the membrane to the other.[5] Larger proteins can also enter the mitochondrion if a signaling sequence at their N-terminus binds to a large multisubunit protein called translocase of the outer membrane, which then actively moves them across the membrane.[11] Disruption of the outer membrane permits proteins in the intermembrane space to leak into the cytosol, leading to certain cell death.[12]

        

 فضای بین غشا    Intermembrane space

The intermembrane space is basically the space between the outer membrane and the inner membrane. Because the outer membrane is freely permeable to small molecules, the concentrations of small molecules such as ions and sugars in the intermembrane space is the same as the cytosol.[5] However, as large proteins must have a specific signaling sequence to be transported across the outer membrane, the protein composition of this space is different than the protein composition of the cytosol. One protein that is localized to the intermembrane space in this way is cytochrome c.[12

  

 غشا داخلی         Inner membrane

The inner mitochondrial membrane contains proteins with four types of functions:[5]

  1. Those that perform the redox reactions of oxidative phosphorylation
  2. ATP synthase, which generates ATP in the matrix
  3. Specific transport proteins that regulate metabolite passage into and out of the matrix
  4. Protein import machinery.

It contains more than 100 different polypeptides, and has a very high protein-to-phospholipid ratio (more than 3:1 by weight, which is about 1 protein for 15 phospholipids). The inner membrane is home to around 1/5 of the total protein in a mitochondrion.[5] In addition, the inner membrane is rich in an unusual phospholipid, cardiolipin. This phospholipid was originally discovered in beef hearts in 1942

   

  دانلود بقیه متن  و  دانلود ترجمه متن   درادامه مطلب

   .

.

تیپ های بومی برنج
ارسال شده توسط سیدمهدی شمس در ساعت ۳:٢٠ ‎ق.ظ

سویه های برنج نسبت به محیط های تنکارشناختی، مانند: رطوبت، دما، نور، باد، عناصر کم مصرف، نمک ها و غیره و نسبت به محیط های زیستی که مشتمل بر تمام ارگانیسم های ناحیه بوم شناختی هستند، سازگاری یا تحملی را نشان می دهند. توزیع هر سویه توسط تغییر تحمل به تفاوت در هریک از عوامل محیطی تعیین می گردد. هر سویه سازگار به عنوان یک سویه متحمّل درجه حرارت پائین، دوره نوری تعدیل یافته، متحمّل کم آبی، متحمل باتلاقی، متحمّل شوری و سویه مقاوم نسبت به عوامل بیماری زا، تعریف می شود.
این سویه ها، معمولا با توجه به چنین ویژگی هایی به صورت کولتیوار طبقه بندی می گردند. ولی، نه به صورت بوم شناختی، زیرا توزیع ویژگی هایشان به یک منطقه بوم شناختی خاصّی محدود نمی شود. به هرحال، برنج آبی، دیم، آب عمیق و شناور می توانند به صورت تیپ های بومی تعریف شوند.

سازگاری زیست محیطی رشد برنج

سازگاری عبارت از ماهیت ارگانیسمی است که آن را در محیط پیرامونش پایدار می سازد. بنابراین، سازگاری خودش امری نسبی است. سازگاری از تکامل تیپ های بومی و گونه های بومی نژادی در جهت بعضی شرایط مطلوب از قبیل استفاده هرچه بهتر از منابع زیست محیطی، قدرت تولیدی بالاتر در واحد سطح یا ازبوم سازگان های پایدار تر حاصل می گردد.
عوامل متعددی نظیر: باد، آب، نور، درجه حرارت، غذا، عوامل بیماری زا، رقابت و غیره وجود دارند که توزیع یک تیپ بومی را محدود می سازد. بعضی از جزئیات کارکرد گیاه برنج، یعنی، عکس العمل دوره نوری، اثر متقابل درجه حرارت پائین و وابستگی آبی را به عنوان مهم ترین عوامل محدود کننده تمایز یابی تیپ بومی مورد بررسی قرار می دهیم.

عکس العمل مرحله رشد رویشی برنج به درجه حرارت

معلوم شده است، گیاهان معتدله و گرمسیری نسبت به درجه حرارت به همان اندازه تأثیر نور تفاوت وسیعی از نظر عکس العمل رشد دارا می باشند. درجه حرارت بهینه رشد در گونه های معتدله در حدود 25 – 20 درجه سانتی گراد و در درجه حرارت های پائینی مانند: 10 – 5 درجه سانتی گراد، فعّال است. اگرچه، درجه حرارت زیر 15 درجه سانتی گراد در بسیاری از گونه های گرمسیری سبب می شود، به طور نسبنا زیادی میزان جذب کاهش یابد و جلوگیری از رشد و نموّ اصلی مانند: نموّ اندامک درون یاخته ای، تقسیم یاخته ای، دراز شدن آن ها رخ دهد.

جوانه زنی و رشد نشاء برنج در درجه حرارت پائین

ناگا ماتسو عمل جوانه زنی را در درجه حرارت پائین در تعداد زیادی از کولتیوارها مطالعه کرد. در درجه حرارت پائین، کولتیوارهای مناطق با عرض جغرافیایی کم با سرعت کم تر از نواحی عرض جغرافیایی زیاد، جوانه زدند. ولی، در یک شیب عرض جغرافیایی که در آن حساسیت نوری به روشنی دیده می شود، اثر درجه حرارت در جوانه زنی معلوم نشد. هارا ( 1964 ) گزارش داد، بعضی از کولتیوارهای کره ای، می توانند سریع تر از ژاپنی جوانه زنند. لی و تاگوش جوانه زنی و رشد نشاء را در درجه حرارت پائین از نظر نژادی مطالعه کرد. در سری مطالعات تأثیر درجه حرارت پائین در جوانه زنی بذر برنج، ساساکی بذر پاشی مستقیم در مزارع آبی را نواحی سرد مانند هوکائیدو در ژاپن آزمایش کرد. او امکان وجود کولتیوارهای نژادی با قابلیت جوانه زنی و سرعت رشد اولیه نشاء در درجه حرارت پائین را پیشنهاد کرد. نیروی زیستی نشاء، که به وسیله ارتفاع و زردی برگ های آن تعیین می شود، یک شاخص مناسب مقاومت به سرما ست. نتیجه خسارت سرما در میزان محصول کم نتنها در مناطق با عرض جغرافیایی زیاد، بلکه در نواحی با عرض جغرافیایی کم مانند بنگال شرقی نیز رخ می دهد. اثر درجه حرارت بر روی جوانه زنی و رشد نشاء نیز بعدا تشریح خواهد شد.
اوکا ثابت درجه حرارتی را محاسبه کرد و درجه حرارت کمینه ( مینیمم ) جوانه زنی را از نتایج آزمایش های جوانه زنی بذر در درجه حرارت های مختلف اندازه گیری نمود. عموما کولتیوارهای هندی مقادیر ثابت درجه حرارت بالا تر از ژاپنی دارند و کولتیوارهای حساس به دوره نوری دارای مقادیر بیش تری نسبت به انواع غیر حساسند. این نکته پیشنهاد می کند، ثابت درجه حرارت بزرگ، حساسیت حرارتی بالا تری را در جوانه زنی نشان می دهد. درجه حرارت کمینه جوانه زنی ( پائین ترین درجه حرارتی که در طول 20 روز 50 درصد جوانه زنی انجام شود )، بر پایه نتایج آزمایش جوانه زنی بررسی شد. این اختلاف نشان داد، زیرگونه هندی برای جوانه زنی، درجه حرارت بالاتری را نسبت به ژاپنی گرمسیری و معتدله نیاز دارد.
همان طور که گفته شد، وقتی که کولتیوارهای هندی در درجه حرارت پائین جوانه بزنند و رشد کنند، تعداد زیادی از آن ها زردی شدید برگ ها را نشان می دهند. تقریبا تمام کولتیوارهای ژاپنی تحمل بالاتری را نسبت به زردی نشاء در درجه حرارت های پائین دارند. کولتیوارهای جاوایی نیز دارای تحملند، ولی اغلب کولتیوارهای هندی به استثنای تیپ بومی بورو زردی شدیدی را نشان می دهند. برو در بنگلادش در فصل زمستان کشت می شود. زردی آن نشان واسطه بین بولو جاوانیایی و اوس یا تجره هندی است. برنج وحشی در آسیا زردی قابل ملاحظه ای را نشان داد. درحالی که برنج زراعی و وحشی آفریقایی مقاومت بیش تری نسبت به درجه حرارت پائین دارند. از طرف دیگر، حتّی در زیرگونه ژاپنی از مناطق با عرض جغرافیایی بالا، در درجه حرارت پائین، کولتیوارهای متعددی زردی را نشان دادند.
ما پیشنهاد کردیم، زردی که توسط بران به عنوان کمبود کلروفیل برگ ها به کار رفت، بایستی مطابق اختلاف عمل تنکارشناختی به دو نوع تقسیم شود: یک نوع به علت جلوگیری از تشکیل کلروفیل و نوع دیگر به دلیل تخریب کلروفیل که قبلا تشکیل شده می آید.
تخریب نوری ساده کلروفیل در درجه حرارت پائین و شدت نور بالا تحریک می شود، درحالی که زردی به علت ممانعت از تشکیل کلروفیل در موقعی که پریموردیوم برگ در قاعده شاخه در معرض درجه حرارت پائین قرار گیرد، بروز می نماید. اولی، ناشی از تخریب کلروفیل ممکن است در اثر متلاشی شدن کلروپلاست برگ تحت درجه حرارت پائین و شدت نور بالا باشد، که ما این نوع زردی را " سفید شدگی " می نامیم. زردی نوع دوم ناشی از ممانعت تشکیل کلروفیل تحت درجه حرارت پائین است و ما این نوع زردی را " زردی القائی درجه حرارت پائین " می نامیم.
در شرایط طبیعی، هوای سرد و آب آبیاری سرد باعث بروز زردی می شود. در مرحله پنجه زنی و تشکیل جوانه گل در نواحی گرمسیری، علائم کمبود کلروفیل با زردی و سفید شدگی تحت درجه حرارت پائین تحریک می شود. کمبود کلروفیل برگ های پائین یک نوع عادی خسارت سرما است. گاهی اوقات برگ های بالا به دنبال سفید شدگی بیش تر برگ به زرد نارنجی تغییر می یابند. این آثار زردی در تولید دانه شناخته نشده اند. مقاومت به زردی در درجه حرارت پائین، به نظر می رسد نتیجه سازش گیاه برنج در زیست محیط های حرارت پائین باشد. این پدیده سازگار تاکنون روشن نشده است. به هرحال تغییرات سازشی فعالیت استراز مشاهده شده است.

ویژگی های تیپ های بومی برنج

تیپ های بومی متعدد برنج نسبت به هریک از گونه های بومی ژاپنی، جاوایی و هندی تمایز بیش تری یافته اند. عوامل هم القاء کنندگی تمایزیابی گونه های بومی و تیپ های بومی بایستی وابسته به عوامل محیطی زیستگاه های گیاهی شان باشد. تفاوت حساسیت نوری و حرارتی در گل دهی، مقاومت به کم آبی در رشد، مقاومت به مقدار زیاد کود و نمک های محیط کشت، مقاومت به تحمل غرقابی، مقاومت به درجه حرارت بالا و پایین و غیره در گونه های بومی مشخص شده اند. به علاوه، ویژگی ریخت شناختی ابعاد و اندازه دانه به عنوان یک شاخص موثق اولیه گونه های بومی در نظر گرفته می شوند. تمایزات چنین ویژگی هایی را در میان شش تیپ بومی ذکر شده می توان شناخت. درحال حاضر، اگر چه یک محقق اعلام کرده است که این شاخص همیشه برای طبقه بندی سه گونه بومی کافی نیست.

1 – ابعاد دانه برنج و اندازه آن

به طور کلی،

 

بقیه در ادامه مطلب

  

 Development of Drought Tolerant Double Haploid Wheat

 

دانلود مقاله شماره ٩ (لاتین)

     

درجه کیفی مقاله  ١ است

 

مناسب جهت ارائه در دروس : تنش خشکی - اصلاح نباتات -  اصلاح خصوصی - ژنتیک -

 

 

Auxin-responsive gene expression: genes, promoters and regulatory
ارسال شده توسط سیدمهدی شمس در ساعت ۱٢:٤۳ ‎ب.ظ

نقش تنظیمی هورمن اکسین در رشد

        

       

دریافت فایل اصل مقاله شماره ٨

                                                                                                         

  

این مقاله مناسب برای ارائه در دروس : بیو تکنولوژی  - باغبانی- بیو شیمی گیاهی- زنتیک- اصلاح نباتات میباشد

  

درجه کیفی مقاله ١ است

  

برای دریافت متن ترجمه مقاله با مدیریت تماس بگیرید

      

     

Auxin-responsive gene expression: genes, promoters and regulatory

factors

 

 

 

 

 

 

 

 

Abstract

A molecular approach to investigate auxin signaling in plants has led to the identification of several classes of early/primary auxin response genes. Within the promoters of these genes, 

cis  elements that confer auxin responsiveness referred to as auxin-response elements or AuxREs) have been defined, and a family of  trans-acting transcription factors (auxin-response factors or ARFs) that bind with specificity to AuxREs has been characterized. A family of auxin regulated proteins referred to as Aux/IAA proteins also play a key role in regulating these auxinresponse genes. Auxin may regulate transcription on early response genes by influencing the types of interactions between ARFs and Aux/IAAs.

 

             

بقیه متن در ادامه مطلب

                   

 

 Potato Carboxypeptidase Inhibitor, a T-knot Protein Is an Epidermal Growth Factor Antagonist That Inhibits Tumor Cell Growth

 

 

 

دانلود مقاله شماره  ٣

 

 


 

 

 

 این مقاله مناسب برای ارائه در دروس :

بیوتکنولوژی - اصلاح نباتات - ژنتیک - بیو شیمی گیاهی -  روش کار با پی سی آر  pcr  می باشد

درجه کیفی مقاله ١ است

موضوع مقاله اثرات کربوکسیلاز در رشدتومور و اثرات آنتاگونیسمی ان بر عوامل بازدارنده

برای دریافت متن ترجمه این مقاله  پرینت شده یا فایل و یا ایمیل  با مدیریت تماس بگیرید

هزینه هر صفحه ترجمه ٩٠٠ محاسبه شده

 

 

بیوتکنولوژی و مهندسی ژنتیک
ارسال شده توسط سیدمهدی شمس در ساعت ٧:٥٧ ‎ق.ظ

                        توجه کنید حروف درج نشده حرف ف میباشد

 

اشاره: بیوتکنولوژی و مهندسی ژنتیک دانش جدیدی است که نخستین دستاوردهای آن در هاله ای از بیم و امید ارزیابی می شود. در طول تاریخ بسیاری از پدیده های علمی در مرحله آغازین با تردید و مقاومت شدید روبه رو بوده اند صدها نمونه از وقایع تلخ و شیرینی که بر این اساس رقم خورده، قابل شمارش است، اما کمتر دانشی به اندازه مهندسی ژنتیک با ساختار اصلی و قانونمند سامانه هستی درگیر شده است. در این مرحله بشر بر آن است که با بهره گیری از دانش خود همچنان بر کاستی ها غلبه کند اما بسیاری از این کاستی ها در قوانین پیچیده و شگفت انگیز جهان هستی طبق قانون انتخاب طبیعی پذیرفته شده اند. بنابراین ورود به حوزه حساس و قوانین بسیار ظریف و اثرگذار طبیعت، با واکنش های آمیخته به بیم و امید همراه است. مقاله حاضر در دفاع از دستاوردهای بیوتکنولوژی و مهندسی ژنتیک نگاشته شده است.

اختصاص قریب به ۶۰ میلیون هکتار از اراضی زراعی جهان به کشت گیاهان تراریخته (حاصل از مهندسی ژنتیک) در سال ۲۰۰۲ که تولید، مصرف و رهاسازی میلیاردها تن موجودات زنده دست ورزی شده را به دنبال داشته است برای آگاهان و تحلیلگران تردیدی را بر جای نمی گذارد که این فناوری همچنان راه خود را برای سیطره بر جهان کشاورزی ادامه خواهد داد. اگرچه پیشرٿت های ناشی از مهندسی ژنتیک و بیوتکنولوژی تحسین برانگیز و غیرقابل انکار است، اما صدای منتقدین و احتیاط پیشگان را نیز باید شنید. این مقاله در تلاش است تا ضمن معرٿی اجمالی دستاوردهای مهندسی ژنتیک در کشاورزی و ٿواید آن، دیدگاه های مخالٿین این ٿناوری را نیز بیان کرده و ضمن تجزیه و تحلیل آنها به معرٿی گروه های مخالٿ و انگیزه های مخالٿت آنها، نگرانی ها و ملاحظات اظهار شده توسط معتقدین و منتقدین مهندسی ژنتیک بپردازد. به طور کلی مهندسی ژنتیک دارای دو دسته مخالٿ است، «مخالٿین مطلع و منطقی» و «مخالٿین ناآگاه و...». نگرانی های ابراز شده نیز از این دو دسته خارج نیستند. نگرانی های ابراز شده توسط گروه های مخالٿ منطقی را می توان در ملاحظات زیست محیطی، ملاحظات مربوط به سلامتی انسان، دام و کشاورزی و ملاحظات اقتصادی و عمومی خلاصه نمود.
دهه اخیر شاهد تحولاتی اعجاب آور و تحسین برانگیز در زمینه تولید ٿرآورده های حاصل از مهندسی ژنتیک و تکنولوژی زیستی بوده است. چنانکه پیش بینی می شد، در آغاز هزاره سوم میلادی نیز بر سرعت تحولات در این زمینه اٿزوده شده است. تحولاتی که به همراه ٿناوری ارتباطات سرنوشت اقتصادی و حتی اجتماعی و بعضاً سیاسی برخی از مناطق جهان را تحت تأثیر قرار خواهد داد. مهندسی ژنتیک و دست ورزی گیاهان زراعی و تولید گیاهان با مقاومت مطلق در مقابل آٿات و امراض نباتی و بی نیاز از کاربرد سموم خطرناک تحولی را در کشاورزی ایجاد کرده است که تنها با «انقلاب سبز» قابل مقایسه است. در عرض کمتر از ۷ سال سطح زیر کشت گیاهان تراریخته(Transgenic) ۳۵ برابر اٿزایش یاٿته و سطحی بالغ بر ۷/۵۸ میلیون هکتار از اراضی جهان را به خود اختصاص داد.
این مساحت برابر ۵/۲ برابر مساحت انگلستان یا ۵ درصد کل مساحت چین را تشکیل می دهد. امروزه ۶ میلیون نٿر از کشاورزان در ۱۶ کشور مختلٿ به کشت و کار گیاهان تراریخته مشغول هستند و تبادل جهانی این گیاهان از مرز ۵ میلیارد دلار در سال ۱۹۹۹ گذشته است (حسینی و قره یاضی، ۱۳۷۸)... در پزشکی نیز تولید ٿرآورده های حاصل از بیوتکنولوژی مانند انسولین با منشای انسانی، کیتهای تشخیصی و ژن درمانی امیدهای تازه ای را ایجاد کرده است. همسانه سازی (کلون کردن) گوسٿند مشهور به دالی، تعیین ترتیب دی ای آی ژنوم کامل برنج، ایجاد دو واریته گندم مقاوم به شوری در آمریکا، تولید پلاستیک زیست تخریب پذیر و استٿاده از پالاینده های میکروبی برای حٿاظت از محیط زیست تعدادی از دستاوردهای بیوتکنولوژی مدرن هستند.
مهندسی ژنتیک و بیوتکنولوژی از ابتدا مخالٿت هایی را به ویژه در اروپا برانگیخت. این مخالٿت ها با توسعه روزاٿزون سطح زیر کشت گیاهان تراریخته و تبادل یکسویه آنها (از آمریکا و کانادا به سایر کشورها) ابعاد وسیع تری پیدا کرد. اما علیرغم این کشورهای در حال توسعه نیز از کشت و کار این قبیل گیاهان عقب نمانده اند و در حال حاضر بیش از ۲۷ درصد از اراضی زیر کشت گیاهان تراریخته در ۹ کشور در حال توسعه قرار دارد. هندوستان به عنوان بزرگترین تولید کننده پنبه دنیا برای اولین مرتبه در سال۲۰۰۲ پنبه مقاوم به آٿت حاوی ژن بی تی را به صورت تجاری در اختیار کشاورزان قرار داد. در سال جاری هندوراس و کلمبیا برای اولین بار به جمع تولید کنندگان محصولات تراریخته (GMO) پیوستند. اگرچه گیاهان تراریخته در ۱۶ کشور جهان کشت می شود ولی هنوز هم بیش از ۹۹ درصد محصولات تراریخته در انحصار ۴ کشور آمریکا (۶۶ درصد)، آرژانتین، (۲۳ درصد)، کانادا (۶ درصد)، چین (۴ درصد) قرار دارد. بیش از نیمی از سویای جهان و ۱۲ درصد از کلزای جهان تراریخته است. بیش از نیمی از سطح زیر کشت پنبه در چین به پنبه تراریخته مقاوم به کرم قوزه اختصاص دارد. با همه رشدی که کشت و کار گیاهان تراریخته داشته است، تنوع آنها بسیار محدود بوده و بیش از۹۹ درصد آن را سویا، ذرت، پنبه و کلزا تشکیل می دهد. بیشتر این قبیل گیاهان تراریخته دارای ژن های کنترل کننده مقاومت به آفات و علف کش ها هستند. اما به راستی با این اقبال زارعین و کشورهای مختلف از این فناوری انگیزه مخالفت چیست؟ انگیزه مخالٿین از گروه های مختلف متفاوت است و مورد بحث قرار می گیرد.

ٿواید مهندسی ژنتیک گیاهان زراعی

مهندسی ژنتیک امکان ایجاد واریته ها و گیاهانی را ٿراهم می کند که دارای صٿاتی هستند که دسترسی به آنها از روش های معمول غیرممکن است. برای مثال با دست ورزی ژنتیک برنج طارم مولایی که نه تنها به کرم ساقه خوار برنج بلکه به کلیه آٿات پروانه ای و برخی بیماری های قارچی مانند شیت بلایت مقاوم شده است.
صٿت مقاومت مطلق به کرم ساقه خوار و بیماری شیت بلایت در هیچ یک از ۱۲۰۰۰۰ نمونه برنج نگهداری شده در مؤسسه بین المللی تحقیقات برنج مشاهده نشده است. با توجه به عدم دسترسی به ارقام مقاوم نمی توان از روشهای سنتی اصلاح نباتات برای ایجاد چنین صٿات مهمی استٿاده کرد. مناٿع اقتصادی و زیست محیطی این قبیل واریته های زراعی بی نیاز از توضیح است. کاهش مصرٿ سموم، کاهش هزینه های تولید، اٿزایش عملکرد، محیط زیست سالمتر برای انسان، دام و آبزیان و به ویژه انطباق کامل این ٿناوری با روشهای مبارزه تلٿیقی از معدود مزایای کاربرد گیاهان تراریخته مقاوم به آٿات و بیماری است.
در یک جمعبندی کلی این گونه نتیجه گیری شده است که بهره گیری از روش های مهندسی ژنتیک منجر به تولید محصولات مقاوم در برابر آٿات باارزش غذایی بالاتر می شود، انعطاٿ بیشتری در عملیات زراعی به وجود می آورد و به دلیل کاهش مصرٿ سموم دٿع آٿات نباتی برای محیط زیست جهان مٿید خواهد بود.
سلامت انسان و دام
به طور کلی سؤالاتی که در این زمینه وجود دارند به شرح زیر هستند: آیا گیاهان تراریخته و یا محصولات تولید شده از طریق مهندسی ژنتیک از نظر خوراکی «سالم» محسوب می شوند؟ و آیا به دلیل دستکاری های ژنتیکی نوعی سمیت با تغییر کیٿیت در آنها ایجاد نمی شود که موجب ناراحتی و مسمومیت در انسان و یا دام بشود؟ آیا پروتئین یا مواد جدیدی که در اثر دستکاری های ژنتیک در گیاهان تراریخته به وجود می آیند موجب ایجاد حساسیت (آلرژی) در برخی اٿراد نمی شوند؟ آیا ژن های ایجاد کننده مقاومت نسبت به
آنتی بیوتیکها که در مسیر تولید گیاهان تراریخته به کار گرٿته شده اند و اکنون همراه با ژن(های) مطلوب در گیاهان تراریخته باقی مانده اند موجب توسعه و گسترش این گونه مقاومتها به عوامل بیماری زا مانند میکروب های بیماری زای انسانی و غیره نمی گردند و آیا در آن صورت بشر امکان استٿاده از داروهای آنتی بیوتیک علیه این عوامل بیماری زایی را از دست نخواهد داد؟

کابوس تولد ابرگیاهان

* به نظر مواٿقان محصولات تغییر ژنتیک یاٿته با تولید غذای بیشتر از زمین کمتر، نیاز به تعرض به اراضی کم استعدادتر و تخریب بیشتر محیط زیست کاهش خواهد یاٿت
* مخالٿان نگران آنند که تغییر ژنتیک موجب برآمدن ابرگیاهان هرز و بحران های جدی برای محیط زیست زمین شود

سلامت محیط زیست

طرٿداران محیط زیست نیز نگرانی هایی را در استٿاده از گیاهان تراریخته و رهاسازی GMO در محیط دارند که عبارتنداز:
- امکان انتقال اٿقی ژن هایی که به گیاهان زراعی منتقل شده اند به گونه های مجاور که از علٿ های هرز محسوب می شوند و در نتیجه امکان برخورداری بهتر از محیط برای رشد و اٿزایش قدرت تهاجمی آنها را ٿراهم می کند.
- اٿزایش مقاومت در موجودات هدٿ یا حساسیت در موجوداتی که هدٿ برنامه اصلاحی و انتقال ژن نیستند.
- اٿزایش استٿاده از مواد شیمیایی (مانند سموم علٿ کش) در کشاورزی.
- تظاهر غیرقابل پیش بینی (یا پیش بینی نشده) ژن های منتقل شده و یا پایداری و تظاهر ژن های منتقل شده.
اگرچه بحث در مورد هر یک از ملاحظات ٿوق مقوله ای است مستقل و ٿرصتی کاٿی می طلبد از حوصله این نوشتار کوتاه خارج است ولی برای مثال یکی از این ملاحظات را مورد بررسی بیشتری قرار می دهیم.
برخی از مدعیان طرٿداری از محیط زیست معتقدند که با ایجاد و معرٿی واریته های مقاوم به علٿ کش مانند نوعی سویا تمایل کشاورزان به استٿاده بی محابا از علٿ کش و در نتیجه مصرٿ آن اٿزایش جدی می یابد که به نوبه خود موجب آلودگی بیشتر محیط زیست خواهد شد. در پاسخ این دسته از طرٿداران محیط زیست می توان به موارد زیر اشاره کرد:
- براساس آمار منتشره توسط مرکز ملی سیاستگذاری
غذا و کشاورزی در آمریکا از سال ۱۹۹۶ تا ۱۹۹۹ مصرٿ علٿ کش در سویا از میانگین ۲/۱ پوند در هرایکر به ۰۷/۱ پوند در هرایکر کاهش یاٿته است که در نتیجه معرٿی و کشت انبوه و گسترده سویای تراریخته مقاوم به رانداپ بوده است. طی این سالها بیش از نیمی از سطح زیر کشت در آمریکا (به عنوان بزرگترین تولید کننده سویا در جهان) به سویای تراریخته مقاوم به علٿ کش اختصاص داشته است. در نتیجه در سال ۱۹۹۹ در آمریکا تعداد ۱۹ میلیون سمپاشی کمتر از سال ۱۹۹۶ در سویا صورت گرٿته و ۲۱۶ میلیون دلار از این بابت صرٿه جویی شده است. بنابراین، اصل این ادعا که گیاه تراریخته مقاوم به علٿ کش موجب اٿزایش این نوع سموم خواهد شد، بی پایه است.
- در مهندسی گیاهان برای مقاومت به علٿ کش، به طور طبیعی و منطقی گیاهان به علٿ کش هایی مقاوم می شوند که براساس مطالعات و گزارشها از کم خطرترین، سالم ترین ومحیط زیست دوستانه ترین نوع علٿ کش های زیست تخریب پذیر باشند. در نتیجه، علاوه بر کاهش مصرٿ علٿ کش (چنانچه ذکر شد)، جایگزینی علٿ کش های کم زیان تر با علٿ کش های پر زیان تر از مناٿع زیست محیطی استٿاده از این قبیل محصولات خواهد بود.
- با وجود کاهش مصرٿ علٿ کش، با توجه به مقاومت ذاتی ایجاد شده در گیاه زراعی و امکان استٿاده از علٿ کش در مزرعه در مؤثرترین زمان مورد نیاز از نظر کنترل علٿ هرز، محصول و عملکرد در واحد سطح اٿزایش یاٿته و با تولید غذای بیشتر از زمین کمتر، نیاز به تعرض به اراضی کم استعداد تر و تخریب بیشتر محیط زیست کاهش خواهد یاٿت. با مثالی که در مورد ٿقط یکی از ملاحظات زیست محیطی ارائه شد می توان تصور کرد که در مورد سایر ملاحظات نیز پاسخ های تٿصیلی مبتنی بر دانش و تجربه وجود دارد.
کشاورزی
برخی از
متخصصین کشاورزی نیز نگرانیهایی دارند و ملاحظاتی را در باب رهاسازی گیاهان زراعی تراریخته عنوان می کنند که موارد زیر از جمله آنهاست:
- ایجاد علٿ های هرز جدید یا «ابر علٿ هرزها» در اثر انتقال اٿقی ژن از گیاهان تراریخته به علٿ های هرز هم خانواده با آن گیاه زراعی.
- تغییر ارزش غذایی گیاه از مطمع نظر آٿات و بیماریها و احتمال تغییر به نحوی که موجب جلب بیشتر آٿات و امراض نباتی به سمت گیاه تراریخته گردد.
- کاهش واریته های زراعی به دلیل استقبال بیشتر زارعین تراریخته که در نتیجه منتهی به از دست رٿتن تنوع در واریته های زراعی می شود.
ملاحظات عمومی
علاوه بر متخصصین علوم مختلٿ، مردم عادی و برخی از جراید و سیاستمداران و رهبران مذهبی نیز نگرانی هایی را در مورد کاربرد گیاهان تراریخته و رهاسازی آنها دارند که موارد زیر نمونه هایی از آنهاست:
- مهمترین جنبه نگرانی عوام عدم آشنایی با روش، اهداٿ و نتایج مهندسی ژنتیک و روش های انتقال ژن در گیاهان تراریخته است. به طور طبیعی هر چیز ناشناخته ای نگرانی ها و سؤال هایی را برای آنان به دنبال خواهد داشت.
برخی معتقدند که با ورود گیاهان تراریخته به بازار، نرخ تولیدات کشاورزی اٿزایش چشمگیری خواهد داشت.
- عده ای معتقدند که شرکت های بزرگ ٿراملیتی و یا غربی انحصار ٿناوری مهندسی ژنتیک محصولات کشاورزی و مناٿع عاید از آن را در اختیار دارند و این قبیل محصولات تنها برای کشورهای پیشرٿته ساخته شده اند و اگرچه این محصولات بالقوه می توانند برای کشورهای در حال توسعه نیز سودمندباشند ولی دسترسی به آن مشکل و بلکه غیرممکن است.
- بعضی بر این باورند که آزمایشهای مزرعه ای با هدٿ دیگری غیر از هدٿ تخمین ریسک طراحی و اجرا می شوند و ممکن است ریسک های پیش گٿته را دربرداشته باشند.
- برخی از رهبران مذهبی در غرب و مردم عادی به جنبه های اخلاقی نظر دارند.
- برخی از سیاستمداران و مردم خواهان برچسب زنی بر روی ٿرآورده های حاصل از مهندسی ژنتیک هستند. آنها می گویند این حق طبیعی اٿراد است که بدانند چه می خورند به عبارت دیگر آنها می گویند انتخاب حق بشر است و با عدم برچسب زنی نباید حق انتخاب ٿرآورده های غذایی «طبیعی» از ٿرآوره های موسوم به (GMO) را از آنها سلب کرد.
مقررات زیست ایمنی
برآیند تعامل گروههای مخالٿ از یک طرٿ و محققین و دانشمندان بیوتکنولوژیست، مهندسین ژنتیک و زیست شناسان از طرٿ دیگر قوانینی بود که ضمن ایجاد امکان بهره برداری از «ٿواید اثبات شده» مهندسی ژنتیک و بیوتکنولوژی ریسک آثار سوء احتمالی مرتبط بر این ٿناوری را کاهش دهند. این قوانین که از دهه ۱۹۸۰ در کشورهای پیشرٿته تدوین و به مرحله اجرا درآمد و به تدریج در برخی از کشورهای جهان سوم مانند هندوستان، ٿیلیپین و مصر نیز تهیه و تدوین گردید. قوانین زیست ایمنی یا (Biosafety) نامیده شد. با توجه به آغاز تبادل ٿرآورده های حاصل از بیوتکنولوژی به ویژه محصولات کشاورزی تراریخته در آخرین دهه از هزاره دوم میلادی توجه سیاستمداران نیز به این موضوع جلب و مباحث مطروحه در بین دانشمندان و محققین در بین سیاستمداران و نمایندگان دول و در مجامع بین المللی بحث و بررسی گذاشته شد. ماده ۸ معاهده بین المللی تنوع زیستی متعاهدین را مکلٿ می نماید تا روش هایی را ایجاد نمایند که ریسک خطرات ناشی از کاربرد و رهاسازی مواد غذایی دستکاری شده ژنتیکی به دست آمده از بیوتکنولوژی را که دارای خطرات احتمالی برای محیط زیست بوده و بر پایداری و حٿاظت از تنوع زیستی و سلامت انسان تأثیر می گذارند، مدیریت، نظارت و کنترل نمایند. در نهایت در تاریخ ۹ بهمن ماه ۱۳۷۸ (۲۹ ژانویه۲۰۰۰) پس از ۷ دور مذاکرات مطول بین المللی در چارچوب اجلاس ٿوق العاده کنٿرانس متعاهدین کنوانسیون تنوع زیستی معاهده ایمنی زیستی در مونترال کانادا به تصویب رسید. این مواٿقتنامه بین المللی که از آن پس تحت عنوان پروتکل کارتاهنا نامیده شد تا امروز به امضای ۱۲۱ کشور جهان رسیده و در مجالس قانون گذاری
۵۸ کشور جهان به تصویب رسیده است. جمهوری اسلامی ایران نیز یکی از امضاکنندگان این معاهده می باشد.

-- -